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value of p we obtain for the threshold currents for case 
(a) 

i? eBw(O.064)2(8mkT / h2)3, 

and for case (b) 

i? 2e(BDp )! (O.064)! (8mkT / h2)9/4. 

Taking at room temperature D p , ... 4 cm2/sec and was 
3 p.7 we may estimate the threshold currents at room 
temperature. 

Case (a): 
Case (b): 

i?2.SX 104 A/cm2, 
i?4.0XIQ4 A/cm2• 

If we assume Dp constant with respect to tempera
ture, both formulas yield the same temperature de
pendence for the current, namely 

i", T!. 
7 The value of 3 p. for w is somewhat arbitrary; we have picked 

w as the distance in which a typical zinc-diffused junction would 
exhibit a variation in doping by a factor of 3. See F. A. Cunnell 
and G. H. Gooch, S. E. R. L. Tech. J. 10, No.2, p. 83 (January 
19(0). 

JOURNAL OF APPLIED PHYSICS 

At liquid nitrogen temperatures the thresholds would 
be reduced by a factor of 8 below the values at room 
temperature into the range of 3-5 thousand AI cm2• 

Such thresholds have been observed by most of the 
workers in this field. 8 

Note added in prooj. A referee of this paper suggested 
that a strict application of the condition of Bernard and 
Duraffourg may lead to a less arbitrary assumption than 
jp=O.l. For band to band transitions, the condition of 
Bernard and Duraffourg yields jp=0.15, jn=0.85, and 
the calculated threshold currents are increased about 
60% while the temperature dependence remains the 
same. For transitions involving an impurity level 0.04 
eV from the band edge, the threshold current below 
room temperature varies faster than Ti, and the calcu
lated threshold currents are decreased. 

8 The threshold current at room temperature has been observed 
to be ten times the threshold current at liquid nitrogen tempera
tures. See G. Burns and M. I. Nathan, IBM J. Res. Develop. 7, 
72 (January 1963). 
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A formula is derived for the electric tunnel effect through a potential barrier of arbitrary shape existing 
in a thin insulating film. The formula is applied to a rectangular barrier with and without image forces. In 
the image force problem, the true image potential is considered and compared to the approximate parabolic 
solution derived by Holm and Kirschstein. The anomalies associated with Holm's expression for the in
termediate voltage characteristic are resolved. The effect of the dielectric constant of the insulating film is 
discussed in detail, and it is shown that this constant affects the temperature dependence of the J-V 
characteristic of a tunnel junction. 

INTRODUCTION 

I F two electrodes are separated by a thin insulating 
film, and the film is sufficiently thin, current can 

flow between the two electrodes by means of the tunnel 
effect.1 Sommerfeld and Bethe2 were the first to make 
a theoretical study of this phenomena for very low 
voltages and for high voltages; later, Holm3 extended 
the theory to include intermediate voltages. The two 
studies were thus concerned with different voltage 
ranges, and the pertinent theory was derived separately 
and independently, using the WBK approximation as 
the starting point in each case. 

Sommerfeld and Bethe first derived equations for the 

1 J. C. Fisher and I. Giaever, J. AppJ. Phys. 32, 172 (1961). 
2 A. Sommerfeld and H. Bethe, Handblich de,. Physik von Geiger 

und Scheel (Julius Springer-Verlag, Berlin, 1933) , Vol. 24/2, p. 450. 
3 R. Holm, J. AppJ. Phys. 22, 569 (1951). 

current density transmitted by a rectangular barrier. 
Inclusion of the image potential in the theory resulted 
in equations that could be solved only numerically. To 
obtain an analytic solution, Sommerfeld and Bethe 
approximated the barrier by a symmetric parabola. 
Later, Holm and Kirschstein,4 using the same method, 
improved upon the results of Sommerfeld and Bethe 
by using a symmetric parabola that was a closer fit to 
the potential barrier. The range and applicability of 
this type of approximation are limited. Holm3 simplified 
the image potential problem for the intermediate volt
age range by correcting the calculations based upon a 
rectangular barrier, using the results obtained by Holm 
and Kirschstein4 for the low-voltage case. The validity 
of this procedure is shown to be questionable. 

4 R. Holm and B. Kirschstein, Z. Tech. Physik 16, 488 (1935). 
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FIG. 1. General barrier in insulating film 
between two metal electrodes. 

The purpose of this paper is to derive a single theory 
for the current flow through a generalized barrier. The 
theory is applied to the problem of the rectangular 
barrier, as studied by Sommerfeld and Bethe,2 and by 
Holm.3 The generalized theory permits derivation of 
more accurate expressions for the high and low voltages, 
as well a~ resolution of the anomalies associated with 
the formulae derived by Holm for intermediate voltages. 

Finally, a method is described for the application of 
the theory to a practical barrier-that is, to a rec
tangular barrier with the image potential included. The 
hyperbolic form of the image potential is used in the 
generalized formula, thus eliminating the need to resort 
to a parabolic approximation. The result is a more 
accurate theoretical current-voltage relationship for a 
tunnel junction. 

NOTATION 

m = mass of electron, 
e= charge of electron, 
h= Planck's constant, 
s= thickness of insulating film, 

Sl, S2= limits of barrier at Fermi level, 
dS=S2- S l, 

J = tunnel current density, 
V = voltage across film, 
Vi=image potential, 
1/= Fermi level, 

feE) = Fermi-Dirac function, 
",=work function of metal electrode, 

q:>o= height of rectangular barrier, 
;p= mean barrier height, 
e=permittivity of insulating film, 

K = dielectric constant, and 
u= tunnel resistivity (Q-cm2). 

THE TUNNEL EQUATION 

When two metallic electrodes are separated by an 
insulating film, the equilibrium conditions require that 
the top of the energy gap of the insulator be positioned 
above the Fermi level of the electrodes. Thus, the action 
of the insulating film is to introduce a potential barrier 
between the electrodes which impedes the flow of elec
trons between the electrodes. 

The electronic current can flow through the insulating 
region between the two electrodes if: (a) The electrons 
in the electrodes have enough thermal energy to sur
mount the potential barrier and flow in the conduction 
band. (b) The barrier is thin enough to permit its pene
tration by the electric tunnel effect. 

Sommerfeld and Bethe, and Holm conducted analyses 
of these conditions for low temperatures so that thermal 
current could be neglected, thus restricting the electron 
transport between electrodes to the tunnel effect; a 
similar procedure is followed in this paper. 

The probability D(E,,) that an electron can penetrate 
a potential barrier of height V (x)-the barrier is as
sumed to be in the x direction, as shown in Fig. 1-is 
given by the well-known WBK approximation5 : 

{ 
41r /82 } 

D(E,,)=exp -h 81 [2m(V(x)-E,,)J!dx , (1) 

where E,,=mv:r?/2, and is the energy component of the 
incident electron in the x direction. The number N 1 of 
electrons tunneling through the barrier from electrode 
1 to electrode 2 is given by 

(2) 

where Em is the maximum energy of the electrons in the 
electrode, and n(vz)dv", is the number of electrons per 
unit volume with velocity between v., and v.,+dvz• For 
an isotropic velocity distribution, which is assumed to 
exist here inside the electrodes, the number of electrons 
per unit volume with velocity between the usual infini
tesimallimits is given by 

n(v)dv....dvydvz= (2m4/h3)f(E)dv"dvydvz, (3) 

where feE) is the Fermi-Dirac distribution function. 
Consequently, from Eq. (3), 

(4) 

In Eq. (4), the integrand is expressed in polar coordi
nates; that is, 

vr
2= vl+vz

2, 

E r=mvr
2/2. 

Substituting Eq. (4) in Eq. (2) yields 

41rm21Em 1'" N 1=- D(E,,)dEz f(E)dE r• 

h3 
0 0 

(5) 

6 D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1951), p. 275. 
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ELECTRIC TUNNEL EFFECT 1795 

The number N 2 of electrons tunneling from electrode 
2 to electrode 1 is determined in a similar manner. The 
tunnel probability D(E,,) is the same in either direction, 
and if electrode 2 is at a positive potential V, with 
respect to electrode 1, the Fermi-Dirac function is 
written as f(E+eV); therefore, 

(6) 

The net flow of electrons N ( = N 1-N 2) through the 
barrier is 

{Em 
N= J 0 D(E")dE,, 

Writing 

and 

{
47rm2 r } 

X ha } 0 [j(E)- J(E+eV)]dE r • 

tm 
J= } 0 D(E")fdE,,. 

Current-Voltage Relationship for a 
Generalized Barrier 

(7) 

(8) 

Writing6 V (x) = 11+ cp(x), with reference to Fig. 1, 
Eq. (1) becomes 

D(E,,)=ex{ - : (2m)lf:
2 

(l1+cp(x)-E,,)ldx J (9) 

Integrating Eq. (9), using Eq. (AS) from the Appendix, 
yields 

D(E",)~exp[ - A (11+ iP- E,,)l], (10) 

where iP, the mean barrier height above Fermi level of 
the negatively biased electrode, is 

1 f82 
ip=- cp(x)dx, 

.:ls 81 

and 
A = (47r{3.:ls/h) (2m)1, 

where (3 is defined in the Appendix. At OOK, fl and f2 
are given by 

fl= (47rme/h3
) (l1- E ,,) 

6 By the substitution V(x)=,!+<p(x), we have inherently as
sumed that the width As of the barrier in the range E,,> Vex»~,! 
is constant and equal to the barrier width at the Fermi level. 
This assumption is justified for practical barriers, because As 
varies slowly below the Fermi level [Fig. 4(a)], and the integral 
has effective values only when E,,~,!. 

and 

.Jo¢ 'XP(_k~1I21 __ 

-- J o (~+lV)eIP [- k i¢ +tV11l2J 

.4> 

ev 

FIG. 2. Pictorial illustration of Eq. (20), showing 
current flow between the electrodes. 

Hence, 

{

(47rme/h3
) (eV) 0 <E,,<l1-eV} 

f= (47rme/h3) (l1- E z) l1-eV <Ex /11 . 
o E,,>l1 

Substituting Eqs. (10) and (11) in Eq. (8) gives 

47rme{ 1>rev 
J =-- eV exp[ -A (l1+ip-E")l]dE,, 

h3 
0 

(11) 

To facilitate integration, Eq. (12) is written in the form 

47rme { l>rev 
J=-- eV exp[ -A (l1+ip-E,,)l]dEx 

h3 0 

-ipf~ exp[ -A (l1+ip-E,,)l]dEx 

~-eV 

+f~ (l1+ip-Ex ) 

rr-eV 

Xexp[ -A (l1+ip-E,,)l]dE,,}. (13) 

The first of the integrals in Eq. (13) yields 

(87rm V /h3) (e/ A)2{[A (ip+eV)!+ 1J exp[ -A (ip+eV)!] 

-[A (ip+11)1+1] exp[ -A (ip+l1)!J}. (14) 

The second term in the braces is negligible compared 
to the first term and, usually, A (cp+eV)t»1; thus Eq. 
(14) reduces to 

(87rme2/h3A)V(ip+eV)1 exp[ -A (ip+eV)l]. (15) 

The second integral in Eq. (13) is of the same form 
as the first. Taking advantage of the approximations 
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FIG. 3. Rectangular potential barrier in insulating film between metal electrodes for: (a) V,.,O; (b) V < 'Po/e; (c) V> 'Po/e. 

that lead to Eq. (15), the second term integrates to 

- (81r1ne/h3A2)~([A ~l+ IJ exp( -A~l) 
-[A (~+eV)i+1J exp[ -A (~+eV)iJ). (16) 

The third integral of Eq. (13) has the form 

r ( z3 3z2 6z 6 ) 
z3e-A.zdz= _e-Az -+-+-+- , 

J A A2 A3 A4 
(17) 

where 
z2=1J+~-E". 

The third and fourth terms in parentheses in Eq. (17) 
are negligible by comparison with the first two; there
fore, the third integral in Eq. (13) integrates to 

(81r1ne/h3A){ ~i exp( - A ~l) 
- (~+eV)1 exp[ -A (~+eV)IJ} 
+ (81tmt1/h8A)(3/A){ ~ exp( -A ~t) 

- (~+eV) exp[ -A (~+eV)iJ}. (18) 

Summing Eqs. (15), (16), and (18) yields 

I= (e/21th) ({3AS)-2{ ~ exp( -A ~l) 
- (~+eV) exp[ -A (~+eV)!J}. (19) 

flowing from electrode 2 to electrode 1, resulting in a 
net current density I, given by Eq. (20). (See Fig. 2.) 
When V is zero, a state of dynamic equilibrium can be 
considered to exist-that is, a current density of mag
nitude I o~ exp( - A ~t) flowing in either direction. 

Low-Voltage Range 

Although Eq. (20) can be used for very low voltages, 
a more convenient form can be deduced for this range. 

From Eq. (20), 

I=Io{ ~ exp(-A~t) 
- (~+eV) exp[ -A(~+eV)!J}. (21) 

It is observed that, since eV"-'O, {3 [as defined in Eq. 
(A6)] takes the value unity. Since ~»eV, Eq. (21) 
can be written 

]=]o[~- (~+eV) exp( -AeV/2~!)J 
X exp( - A ~!). (22) 

Expanding exp( -AeV /2~t), and neglecting terms con
taining V2 and higher orders, Eq. (22) becomes 

I = I o[ ~- (~+eV)(1-AeV /2~i) ] exp( - A ~t) 
=IoeV[A~1/2-1J exp( -A ~i). (23) 

Equation (19) can be expressed in the following form: Since A ~i/2»1, Eq. (23) reduces to 

]=Io{ ~ exp( -A ~i) 
-(~+eV)exp[-A(~+eV)iJ}, (20) where 

where I L=[(2m)i/ As] (e/h)2. 

(24) 

Io=e/21th{ftAs)2. 

Equation (20) has the advantage that it can be 
applied to any shape of potential barrier providing the 
mean barrier height is known, or, alternatively, if the 
current-voltage characteristic of a tunnel junction is 
known, the mean barrier height can be determined. 

Equation (20) can be interpreted as a current density 
I o~ exp( - A ~t) flowing from electrode 1 to electrode 
2 and a current density Io(~+eV) exp[ -A (~+eV)!J 

Since eV is very small,.~ is considered to be the zero
voltage mean barrier height. Thus, in this case, Eq. (24) 
expresses J as a linear function of V; that is, the 
junction is Ohmic for very low voltages. 

APPLICATION OF THE TUNNEL EQUATIONS 

Consider a rectangular potential barrier [Fig. 3(a)]. 
This was the type of barrier studied by Sommerfeld and 

Downloaded 23 Apr 2012 to 132.66.144.233. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions
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Bethe, and by Holm. Sommerfeld and Bethe considered 
the low-voltage and high-voltage cases, and Holm the 
intermediate case. Equations for each are derived for 
these cases, using Eqs. (20) and (24). 

Low-Voltage Range: V~O 

From Fig. 3(a), 
.1s=s, 

and 
ip= <Po· 

Substituting these values in Eq. (24) gives 

J = [3 (2m<p)l/2sJ(e/h)2V 
Xexp[ - (41rs/h) (2m <po) l]. (25) 

This result is in agreement with the Sommerfeld-Bethe 
result for low voltages. 

Intermediate-Voltage Range: V < tpo/e 
From Fig. 3 (b), 

.1s=s, 
and 

ip= (<p-eV /2). 

Substituting these values in Eq. (20), 

J=Jo{(<p-eV/2) exp[ -A (<p-eV/2)1] 

- (<p+eV/2) exp[ -A (<p+eV/2)iJ} 

e {( ev) [41r,8S ( eV)J <p-- exp ---(2m)! <p--
27rh(,Bs)2 2 h 2 

( 
ev) [41r,8s ( eV)!J} - CP+2 exp --h-(2m)l CP+Z- . (26) 

It is now necessary to discuss the error associated 
with Eq. (26). It can be shown, using Eq. (A6), that .B 
is given by 

,8= 1- (eV)2j96(cpo+'I)-E,,-eV /2)2. 

If this value of .B is substituted in Eq. (26), the maxi
mum error in the exponents in using the approximate 
integral Eq. (AS) is approximately 1% and occurs 
when V = <pol e and E,,= 'I). For values of e V < <pol e, the 
error reduces rapidly. If .B is chosen to be unity, the 
error in the value of the exponents is approximately 
6% at V = cpo/e. However, since the error reduces 
rapidly for values of V < <pI e, the error is only 1% 
at V=0.75cpo/e, and,8 can, therefore, be chosen to be 
unity to a reasonable approximation. 

With ,8= 1, Eq. (26) becomes68 

Sa Note added in proof .. Simmons has shown [see J. G. Simmons, 
J. Appl. Phys. 34, 238 (1963)J that, at relatively low voltages, 
Eq. (27) reduces to 

where 
J=h(V+PV3), 

P= [(Ae)2/96<pJ- [A e2/32<pJJ, 

which is in good quantitative agreement with the experimental 

Equation (27) differs from Holm's result [Eq. (16) 
of reference 3]. In addition to the terms of Eq. (27), 
Holm includes an additional term, 

(2m)l ( ev)! [41rS ( ev)!] 
~eV <po+2 exp -h(2m)! <po+Z- (28) 

which is in error. Holm recognizes that there are in
consistencies in his result (Sec. VIII of reference 3), for 
two reasons: (1) As V -t 0, his equation does not 
reduce to the Sommerfeld-Bethe relationship; that is, 
the equation does not predict the low-voltage Ohmic 
characteristic [Eqs. (24) and (25) J. (2) According to 
his equation, the resistance of the junction initially 
increases with increasing voltage. 

Holm suggests that these anomalies are due to the 
approximate nature of D(E.} This is not the case, 
however, for the anomalies are removed when the ex
traneous term, Eq. (28), above, in his equation [Eq. 
(16) of reference 3J is neglected. (See Fig. 6.) 

High-Voltage Range: V> tp/e 

Figure 3(c) illustrates the energy diagram for this 
case; from this figure, 

.1s=scpo/eV, 
and 

ip= cpo/2. 

Substituting these values in Eq. (20) yields 

(
2i" (F / (8)2) { [47r,8 J ( 2e V) 

J = exp ----m! CPo! - 1+-
87rhcpo eF CPo 

[ 
41r{3 (2e V)lJ} Xexp -7i <pol 1+--;:- , (29) 

where F= V / s= the field strength in the insulator. 
It is now necessary to determine the correction factor 

,8 appearing in Eq. (29). From Eq. (A6), 

[ 
(e V / S)2Jl a8=8'1'o,ev 

13= 1- -- (.1s/2-xNx/(CPo/2)2 
8.1s 0 

= 1-1/24= 23/24. 

Therefore, for this case, 13 is independent of V. Sub-

results of Knauss and Breslow [see H. P. Knauss and R. A. 
Breslow, Proc. IRE SO, 1843 (1962)J. 
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stituting this value in Eq. (29) gives 

2.2e
3p2{ [ 

J=--- exp 
87rh cpo 

_87r_(2m)!cpo']_ (1 +_2e_V) 
2.96heF cpo 

xex{ 
_87r_(2m)!cpo!(1+2_e_V)!]}. 
2.96heF CPo 

(30) 

For very high voltages (that is, where V> (cp+?7)/e), 
the Fermi level of electrode 2 lies below the bottom of 
the conduction band of electrode 1. Under these condi
tions, electro~s cannot tunnel from electrode .2 to 
electrode 1, SInce there are no empty levels avaIlable 
to them. The situation is reversed, however, for elec
trons tunneling from electrode 1 to electrode 2, since 
all of the available levels in electrode 2 are empty. 
The situation is analogous to that of field emission 
from a metal electrode, and, for this condition (that is, 
where V> (cp+?7)/e), the second term in Eq. (30) is 
negligible; thus, 

2.2e3
p2 [87r ] 

J=-- exp (2m)tcpo' . 
87rhcpo 2.96heF 

This equation is similar to the Sommerfeld-Bethe2 

relationship for high voltages, except for the mUltiplica
tive factor 2.2; there is also a slight difference in the 
numerator, where 3 is replaced by 2.96. These differ
ences arise because of the variation of ~s below the 
Fermi level. 6 Because of the dominant influence of the 
exponential term, and since J, in Eq. (30), is a rapidly 
varying function of s, cp, and V, this difference is con
sidered to be insignificant. 

THE IMAGE FORCE 

The effect of the image force is to reduce the area of 
the potential barrier by rounding off the corners and 
reducing the thickness of the barrier (Fig. 4) and, 
hence, increasing the flow of current between the elec
trodes. The image potential is a hyperbolic function 
which, when substituted in Eq. (9), results in an elliptic 
integral which can be solved only numerically. Som
merfeld and Bethe, and Holm solved the problem 
analytically by approximating the barrier by a sym
metric parabola. This type of approximation is good 
only for the low-voltage range and high barriers, and 
is restricted in range of validity. This can be seen by 
reference to Fig. 5 (a) (which illustrates the energy 
diagram with the electrodes at the same potential
that is, the Fermi levels coincide). When a voltage V is 
applied to the electrodes, the parabola is moved verti
cally down the energy diagram (that is, in the direction 
of negative energy) by an amount eV /2. The best cor
relation between the symmetric parabola and the true 
image force occurs at very low voltages, and is, at best, 
only fair, even where the parabola parameters are 
optimized to particular values of s and cpo. The correla-

DISTANCE BETWEEN ELECTRODfS'" 
tOS TCP OF RECTANGULAIIO 0.2S 045 0.65 0.85 

BARRIER 

m. 
KS 

.c 
!: !Q ., KS 

~ 

I ~ 

~ III ... KS 
G 
Iii 
:z: 

100 
Ks 

1!Q. 
I KS I 
I . __ • TlIUE IMAGE FORCE . >. 2 

140 . - APPROXIMAlED I~GE fORCE·' I:~S.~ 
Ki I ""'''' BOUNDARY OF RECTANGULAR BARRIER 

iNSULATOR ELECTftOOE 2 

(a) 

20 I To 

IV'" 40 
~ 

!I! 
KI 

!2 
Ko 

(b) 

FIG. 4. Normalized energy diagram of a rectangular barrier 
with image forces included. Diagram compares the actual image 
potential with the approximate image potential for two cases: 
(a) zero voltage across film; (b) voltage of magnitude 60/eKs 
across film. 

tion deteriorates for barriers having s and cpo different 
from those for which the parabola constants are opti
mized. For high voltages, the fit is very poor. [See 
Fig.S(b).] 

The true image force problem can be solved using 
Eqs. (20) and (24); however, the resulting expression, 
which is an infinite series, is awkward to handle. To 
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facilitate computation, the true expression can be ap
proximated accurately by a simple hyperbolic function 
[Fig. 4(a)] which can also be readily solved by Eqs. 
(20) and (24). In contrast to the symmetric parabolic 
approximation, a very close fit is obtained to the 
actual barrier for all s, cpo, and V [See Fig. 4(b).] 

The Image Potential 

The image potential is readily determined using 
image force methods,7 and is given by 

( 
e

2
)[ 1 00 { ns V·= -- -+L 

• %E 2x n=l [(ns)Lx2] 
(31) 

where x is the distance of the electron from electrode 1. 
When x=s/2, 

e2 00 (_1)n e2 

Vi= -- L --= --ln2. (32) 
21rES n=l n 21rES 

Equation (31) as it exists is extremely awkward to 
handle; a good approximation-see Fig. 4(a)- is 
given by 

(33) 
where 

A=e2ln2/81rEs. 

Transmission Through a Barrier with 
Image Force Included 

(34) 

When the image potential expressed by Eq. (33) is 
taken to account, cp(x) is written-see Fig. 4(b)-as 

cp(x) = cpo-eV X/S-1.15As2/X(S-X). 

For this case, 

1 f82 { jp=- (Po 
As 81 

eVx 

S 

1.15>'S2 } 
--- dx. 
xes-x) 

(35) 

The limits Sl and S2 are given by the real roots of the 
cubic equation 

cpo-eVx/s-1.15'As2/x(s-x)=O. (36) 

However, to facilitate an analytic solution of Eq. 
(35), the roots are written to a good approximation as 

and 

Sl = 1.2>.s/ CPo } 
e V < CPo, (37) 

s2=s[1-9.2A/ (3cpo+4A- 2e V)]+Sl 

Sl = 1.2AS/ CPo 

S2= (cpo-5.6A) (s/eV) 
}ev> CPo. (38) 

7 W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill 
Book Company, Inc., New York, 1950), Chap. IV. 
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FIG. 5. Normalized energy diagram comparing a parabolic 
approximation with the true barrier for: (a) zero voltage bias; 
(b) voltage bias of V =60/eKs. 

Integrating Eq. (35) yields: 

jp= cpo- (eV /2s) (Sl+S2)- [1.15Xs/ (S2-S1)J 

Xln[s2(s-Sl)/Sl(S-S2)]= CPr. (39) 

Intermediate Voltages 

For intermediate voltages (defined here as 0 < V 
< cpo/e), the tunnel current density is obtained by 
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substituting Eq. (39) into Eq. (20), giving 

J=Jot'Pr exp(-A'Prl) 
-('Pr+eV) exp[ -A ('Pr+eV)!]} , (40) 

where Sl and S2 are given by Eq. (37). 
It is necessary to comment here on the value of f3 

appearing in A. It can be shown, using Eq. (A6), that 
f3>0.96 for all values of V. Thus, it is assumed that f3 
takes the value unity for all V, to a good approximation. 
In this case, A is given by 

A = (47r~s/h)(2m)i. 

High Voltages 

The high-voltage range is defined as V> 'Po/e. The 
current density equation is identical to Eq. (40), but, 
in this case, Sl and S2 are given by Eq. (38). For 
very high voltages-that is, where V> ('Po+7J)/ e-the 
second term is negligible compared to the first. 

Low Voltages 

This range is defined as V~; thus, Eq. (39) becomes 

iP= 'PO-[1.15AS/(S2-S1)] In 
x [S2(S-Sl)/Sl(S-S2)]= 'PL, (41) 

where Sl and S2 are given by Eq. (37), with V set equal 
to zero. Alternatively, because, in this case, the barrier 

----HOLM'S 1HEOIIY 

10-4 

lOA 

10~0----~---2~--~5~--~~~-----'~ 
v (VOLTS) 

is symmetrical, S2 can be written simply as 

S2=S-Sl=S-1.2AS/ 'P, 
and 

Sl= 1.2As/ 'P. 

Substituting Eq. (41) in Eq. (24) ghres 

J =J L'PLt exp( - A 'PLt). (42) 

Comparison between Eqs. (42) and (40) shows that 
it is not possible to deduce information relevant to the 
higher voltage ranges from the low-voltage case, as 
Holma•s has suggested. 

EQUATIONS EXPRESSED IN PRACTICAL UNITS 

For convenience of numerical calculations, J is ex
pressed in A/cru2, 'Po in V, and s, Sl, and S2 in A units. 

Generalized Barrier 

(i) All V, Eq. (20): 

J = [6.2X 1010/ (f3~S)2]{ iP exp( -1.025f3~siP!) 
- (iP+ V) exp[ -1.025,8As(iP+ V)l]}. (43) 

(ii) V"-'O, Eq. (24): 

J=3.16X101OiPt(V/~s) exp(-1.025~siP!). (44) 

Rectangular Barrier 

(i) V"-'O, Eq. (25): 

J=3.16X1010iPo!(V/s) exp(-1.025s'Pol). (45) 

(ii) 0:::: V < 'PO; Eq. (27): 

J = (6.2X 1010/s2
){ ('Po- V /2) exp[ -1.025s('P0- V /2)t] 

- ('Po+ V /2) exp[ -1.02Ss( 'Po+ V /2)1]}. (46) 

(iii) V> 'Po; Eq. (30): 

J =3.38X 101O(J12/ 'Po) { exp( -0.689'Pof/F) 

-(1+ ::)exp[ -0.689;'(1+ ::YJ}. (47) 

Rectangular Barrier with Image Forces Included 

(i) V"-'O; Eq. (42): 

J = (3.16X 1010
/ ~S)'PLW exp( -1.025~s'PLt), (48) 

where 

qh= 'Po-[5.75/K(S2-S1)] In[s2(s-Sl)/Sl(S-S2)], (49) 

and 
sl=6/K'Po, 

S2=S- (6/K'P0), 
FIG. 6. Theoretical 0'-V characteristic of a tunnel junction 

having a rectangular barrier; diagram also shows the anomalous 8 R. Holm, Electric Contacts Handbook (Springer-Verlag, Berlin, 
behavior of Holm's equation. 1958), 3rd ed., p. 433. 
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(ii) All Vi Eq. (40): 

J= (6.2Xl()l°j A,s2){ rpr exp( -1.025~srpri)} 
- (rpr+ V) exp[ -1.025~s( rpr+ V)!]}, (SO) 

10 

4>-' 

)( - 8ARRIER DEPRESSED BELOW 
FE~I I..EVEL 

V (VOLTS) 

(a) 

4 

~.r--------'~-----'------------~ 

to' 

1~~ __ ~ ____ ~ __ ~~ __ -,.~ __ ~ __ ~ 
o 2 3 

V MlUSI 
(e) 

6 

where 

rpr= rpO- (V /2s) (S1+S2) 
- [5.75/ K(S2- S1)] In[S2(S-Sl)/ S1(S-S2)], 

10' 

.. 
~ tO

l 

VI 
:II 

~ 
'" u I z 
;! 
VI 
in 
II! 

Irl 

-" 10 

,i!' 
0 

V (VOLTSI 

(b) 

4 5 • 

FIG. 7. Theoretical u-V characteristic of a tunnel junction hav
ing a practical barrier for s with the values 20, 30, 40, and 50 A and 
for; (a) '1'=1 eVj (b) '1'=2 eVj (c) '1'=3 eV. 

and 

s1=6/Krpo } 
V <rpo, 

S2= s[1-46/ (3rpoKs+ 20- 2VKs)]+6/ K rpo 

s1=6/K<po 

S2= (rptJ(s-28)/KV 

NUMERICAL EVALUATIONS 

Tunnel Resistivity 

} V> <po. 

Tunnel resistivity u( = V / J), as a function of voltage, 
is illustrated in Fig. 6 and 7, using Eqs. (45) through 
(SO). The curves shown in Fig. 6 are for a rectangular 
barrier without image forces. Figure 7 (wherein a 
dielectric constant of 6 has been assumed) depicts 
curves for a practical barrier-that is, a rectangular 
barrier with image forces included. It can be observed 
that, for a given s, <p, and V, the tunnel resistivity is 
lower for thepractical barrier than for the ideal barrier, 
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1O-~40CJ...L-L--:20t--'----:'C30~--4~O-----I50 

S (ANGSTROMS) 

FIG. 8. Low-volt
age q-V character
istic for practical 
barrier; dotted lines 
indicate results of 
Holm and Kirsch
stein using the para
bolic approximation. 
For these curves, 
K=1. 

as anticipated, although the general shape of the curves 
is preserved. 

For small values of V, all of the curves of 0' versus V 
approach a horizontal asymptote; that is, the junctions 
exhibit an Ohmic characteristic which Holm's equations 
failed to predict. (See Sec. VIII, reference 3.) This 
Ohmic characteristic is well documented in the litera
ture.1 •9 •10 Figure 8 illustrates the low-voltage (Ohmic) 
resistance as a function of thickness and barrier height, 
using Eq. (42). The broken lines indicate the results of 
Holm and Kirschstein4 for the low-voltage resistance in 
which the image force has been approximated by a sym
metric parabola. The correlation between the two sets 
of curves is poor for small cp but good for high cpo This is 
because the image force has a greater influence on small 
barriers, and, hence, in this range, the approximate 
nature of the image force solution of Holm and Kirsch
stein4 becomes apparent. 

If the voltage applied to the junction is great enough, 
the barrier is depressed below the Fermi level of the 
negatively biased electrode [Fig. 7 (a)], and the current 
flows unimpeded in the conduction band of the insulator. 
The voltage at which this occurs is greater the larger 
the values of s, CPo, and K. (See Fig. 4.) 

Effect of Dielectric Constant 

The tunnel characteristics are dependent upon the 
dielectric constant of the insulating film; the smaller 

9 R. Holm and W. Meissner, Z. Physik 74, 715 (1932) j 86, 787 
(1933). 

10 J. G. Simmons, G. ]. Unterkoiler, and W. W. AlIen, App!. 
Phys. Letters 2, 78 (1963). 

the value of K, the lower is the tunnel resistivity. 
Figure 9 illustrates the profound effect of the dielectric 
constant upon the low-voltage tunnel resistance. Since 
the dielectric constant of most materials is a function of 
temperature,ll it follows that the tunnel characteristics 
are an intrinsic function of the thermal properties of the 
insulator, as well as of the electrodes. This fact appears 
to have been n.eglected in the literature. 

SUMMARY 

A generalized expression has been derived for the 
electric tunnel effect through an arbitrary barrier in a 
thin insulating film. The formula is applied to a rec
tangular barrier and the resulting expression compared 
with existing theories. The anomalies associated with 
Holm's expression for the intermediate voltage range 
are resolved and shown to arise from an extraneous 
term. 

The formula is readily applied to the true image force 
problem for all voltage ranges. The resulting expressions 
are compared with the low-voltage characteristic de
rived by Holm and Kirschstein, who used the sym
metric parabola approximation. It is shown that the 
approximation is good for high barriers, but poor for 
low barriers. Holm's suggestion for correcting the inter
mediate-voltage J-V expression for a rectangular 
barrier to include the image forces is shown to be 
questionable. 

S clNGSTllOilSI 

FIG. 9. Theoretical low-voltage O'-V curves showing 
the effect of the dielectric constant. 

II A. R. von Hippe1, Dielectric Materials and A pplications (Tech. 
Press, Cambridge, Massachusetts, and John Wiley & Sons, Inc., 
New York, 1961), Pt. V. 
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The effect of the dielectric constant of the insulating 
film is discussed in detail, and is shown to have a pro
found effect on the J- V characteristic. The results 
suggest that if the dielectric constant is temperature
dependent, the J-V characteristic is also temperature
dependent. 
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APPENDIX 

To integrate an arbitrary function jt(x)-that is, 

(Al) 

a function j is defined as 

f= l/.1s f f(x)dx; (A2) 

that is, j is the mean value of f(x). Equation (Al) is 
then written as 

1
82 182 { [j(x)-JJ}i 

fl(x)dx= fit 1 + _ . 
81 81 f 

(A3) 

Expanding Eq. (A3) and neglecting terms in 
[(j(x)- J)/]]3 and higher powers, 

f 8

2 

jt(x)dx 
81 

- f82 { [J(x)-JJ 
=j! 1+ _ 

8] 2f 

[J(x)- fJ2 l 
- J dx. (A4) 

Sj2 

The integral of the second term in the brackets is zero 
[as defined by Eq. (A2)]; thus, Eq. (A4) integrates to 

f 82 {1 f82 } J!(x)dx,.···}!.1s 1----
2 

- [j(x)-J]2dx 
8] Sf Lls 8] 

=f3jLls, (AS) 

where 

and 

f3=correction factor= 1-~ f8
2 
[j(x)- fJ2dx. (A6) 

Sf2Lls 8] 

Usually, 

1 f8 2 

1»-.- [j(x)- fJ2dx; 
Sj2.1s 81 

that is f3"-'1. Thus, 

1
82 

J!(x)dx= fi.1s, 
'I 

(A7) 

to a good approximation. 
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