

## Bio-Nanophotonics : From Visible Bionanodots To Peptide Integrated Optics

Ministry of Science, Technology and Space of Israel School of Electrical Engineering, Tel Aviv University

## November 13, 2018 Room 206 ,Wolfson building

Bionanophotonics is a new paradigm which can revolutionize emerging fields of precision medicine and health monitoring. We report on a new concept of a deep modification of basic physical properties in bioinspired peptide nanostructures by thermally mediated refolding native a-helical bioarchitectures into b-sheet networks. We will focus on a biophotonic effect of visible fluorescence found in peptide/protein b-sheet nanostructures, which is similar to that observed in amyloid nanofibrils associated with neurodegenerative diseases (Alzheimer, Parkinson and more). A new class of visible fluorescent bionanodots, unique method of super resolution imaging of single nanodots and theory describing this new phenomenon are discussed. This advanced biophotonics also promotes development of a new field of peptide-integrated optics towards medical diagnosis, light-induced therapy and implantable biochips.

| 9:00 - 9:30   | Registration and Light refreshment                                                                                                                                                           |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9:30 – 9:40   | Dr. A. Broisman, Director of Applied Science and Engineering, Ministry of Science,<br>Technology and Space of Israel<br>"The mission of the Ministry of Science and Technology"              |
| 9:40-10:20    | Prof. Dan Marom, HUJI : Keynote lecture<br>"Integrated Photonics: platforms and functions"                                                                                                   |
| 10:20 - 10:50 | <b>Prof. G. Rosenman, School of Electrical Engineering, Tel Aviv University</b><br>"Nanophotonics in Amyloid Bioinspired Nanostructures: Visible Bionanodots"                                |
| 10:50 – 11:10 | PhD student N. Lapshina, Prof. T. Ellenbogen, School of Electrical Engineering, Tel Aviv<br>University<br>"Imaging and optical properties of single visible peptide dots"                    |
| 11:10 - 11:30 | Coffee Break                                                                                                                                                                                 |
| 11:30 - 12:00 | <b>Dr. A. Natan, School of Electrical Engineering, Tel Aviv University</b><br>"Proton transfer induced fluorescence in self-assembled short peptides - a theoretical perspective"            |
| 12:00 - 12:30 | Future Development:<br><b>Dr. B. Apter, Faculty of Engineering, Holon Institute of Technology,</b><br>"Peptide Integrated Optics: Passive and Active Optical Waveguiding in Amyloid Fibrils" |
| 12:30         | Lunch                                                                                                                                                                                        |

Visible fluorescent in peptide bionanodots



Super resolution imaging of bionanodots



Active fluorescent waveguiding in FFF-tape

