פרופ' שי יהושע יצחק צוקר

סגל אקדמי בכיר בבית הספר לסביבה ולמדעי כדור הארץ
ועדת מינויים יחידתית בבית הספר לסביבה ולמדעי כדור הארץ
ראש ביה"ס בבית הספר לסביבה ולמדעי כדור הארץ
ראש בית הספר בהחוג ללימודי הסביבה
בית הספר לסביבה ולמדעי כדור הארץ סגל אקדמי בכיר
פרופ' שי יהושע יצחק צוקר
טלפון פנימי: 03-6409284
פקס: 03-6409282
משרד: קפלון, 219A

מחקר

  • פלנטות מחוץ למערכת השמש - גילוי ואפיון
  • כוכבים כפולים 
  • עיבוד אותות אסטרונומיים - ספקטרוסקופיה, פוטומטריה, אסטרומטריה
  • אסטרוסטטיסטיקה

השכלה

  • בוגר, פיזיקה ומתמטיקה, אוניברסיטת תל-אביב, 1989
  • מוסמך, פיזיקה ואסטרונומיה, אוניברסיטת תל-אביב, 1993
  • דוקטור, פיזיקה ואסטרונומיה, אוניברסיטת תל-אביב, 2002

מינויים אקדמיים

  • בתר דוקטור, החוג לגיאופיזיקה ומדעים פלנטריים, אוניברסיטת תל אביב, 2002
  • בתר דוקטור, מצפה הכוכבים, אוניברסיטת ז'נבה, שוויץ, 2003
  • בתר דוקטור, החוג לאסטרופיזיקה, מכון ויצמן למדע, 2004
  • בתר דוקטור, החוג לגיאופיזיקה ומדעים פלנטריים, אוניברסיטת תל אביב, 2005
  • מרצה בכיר, החוג לגיאופיזיקה ומדעים פלנטריים, אוניברסיטת תל אביב, 2006
  • פרופסור חבר, החוג לגיאופיזיקה, אוניברסיטת תל אביב, 2009
  • פרופסור מן המניין, החוג לגיאופיזיקה, אוניברסיטת תל אביב, 2014

מידע כללי

פרופ' שי צוקר חוקר בעיקר כוכבים כפולים ופלנטות מחוץ למערכת השמש, אך לעתים "חוטא" גם בבחינת תופעות אסטרונומיות אחרות, החל מאסטרואידים במערכת השמש, עבור בכוכבים במרכז גלקסיית שביל החלב ועד קוואזרים. המכנה המשותף למרבית המחקרים של פרופ' צוקר הוא השימוש בשיטות סטטיסטיות ושיטות עיבוד נתונים מתקדמות באסטרונומיה ("אסטרוסטטיסטיקה").

בשנת 1994 (כשהיה עדיין תלמיד לתואר שני) פירסם פרופ' צוקר, יחד עם מי שהיה המנחה שלו פרופ' צבי מזא"ה, את האלגוריתם TODCOR, למדידת מהירויות רדיאליות של כוכבים כפולים ספקטרוסקופיים. ברבות השנים הפך האלגוריתם כלי מחקרי בסיסי המשמש את האסטרונומים החוקרים כוכבים כפולים.

ב-2001 היה חבר בצוות שגילה את הפלנטה מחוץ למערכת השמש HD209458b. מייד לאחר מכן זו התגלתה כפלנטה הידועה הראשונה המבצעת ליקוי של כוכב האם שלה.

בשנת 2003, במסגרת לימודי הדוקטורט, פיתח יחד עם פרופ' מזא"ה ופרופ' גזה קובץ' מהונגריה, את האלגוריתם BLS. אלגוריתם זה משמש לגילוי פלנטות המבצעות ליקוי של כוכבים האם שלהן. אלגוריתם זה הפך לכלי סטנדרטי בידיהם של מחפשי הפלנטות, ורבות מהפלנטות שהתגלו ע"י צוותים שונים בעולם התגלו תוך שימוש ב-BLS.

ב-2004, בעודו בהשתלמות פוסט-דוקטורט במצפה הכוכבים של אוניברסיטת ג'נבה בשוויץ בקבוצתו של חתן פרס נובל מישל מאיור, הוביל צוות מחקר שוויצרי-ישראלי שגילה מערכת פלנטרית ייחודית, HD41004, בה שני כוכבים, "ננס חום", ופלנטה, תוך שימוש בשדרוג של האלגוריתם הותיק TODCOR.

בשנת 2006, בתקופת השתלמותו במכון ויצמן, הוביל צוות ממכון ויצמן וממכון מקס פלנק בגרמניה, שכלל את חתן פרס נובל ריינהרד גנצל שהראה את החשיבות של אפקטים יחסותיים במסלולים הנצפים של כוכבים סביב מרכז גלקסיית שביל החלב. בשנת 2018, הצוות של ריינהרד גנצל אישש תצפיתית את התחזיות של מחקר זה.

בהתבסס על תוצאות אלה, יחד עם פרופ' טל אלכסנדר ז"ל ממכון ויצמן ופרופ' צבי מזא"ה, הם חזו ב-2007 את אפשרות הגילוי של כוכבים כפולים ע"י שינויים מזעריים בעוצמת האור שלהם - אפשרות שבהמשך התממשה פעמים רבות ע"י גילויים של כוכבים כאלה בעזרת הלווין קפלר.

כעת פרופ' צוקר חבר בקונסורציום DPAC, הממונה על עיבוד הנתונים מהחללית Gaia של סוכנות החלל האירופית. במסגרת DPAC, הקבוצה CU7, בה הוא חבר, אחראית על ניתוח ואיפיון של השתנויות בזמן, ופרופ' צוקר מתמקד באפשרות גילוין של פלנטות המבצעות ליקויים ע"י Gaia. לאחרונה DPAC שחרר מקבץ נתונים חדש, שלישי במספר, שכולל גם 41 כוכבים שמראים את ההשתנות האופיינית בזמן, שהתגלו ע"י הצוות בתל אביב. הצוות גם חקר יותר לעומק שניים מ-41 המועמדים והראה שאכן מדובר בפלנטות.

פרופ' צוקר חבר לפרופ' רג'א ג'יריס מבית הספר להנדסת חשמל בפקולטה להנדסה וביחד הם מיישמים שיטות של למידה עמוקה על מנת לפתור את האתגר של גילוי פלנטות דמויות כדור הארץ על רקע ההשתנות של כוכבי האם ("רעש אדום"), בעיה מרכזית בחיפוש אחר פלנטות הניתנות ליישוב.

פרסומים בעתונים מדעיים (peer-reviewed)

1. Zucker, S., and Mazeh, T. (1994). Study of Spectroscopic Binaries with TODCOR 1. A New Two-Dimensional Correlation Algorithm to Derive the Radial Velocities of the Two Components. The Astrophysical Journal, 420, pp. 806-810.

2. Mazeh, T., Zucker, S., Goldberg, D., Latham, D.W, Stefanik, R.P., and Carney, B.W. (1995). Study of Spectroscopic Binaries with TODCOR II. The Highly Eccentric Binary HD2909. The Astrophysical Journal, 449, pp. 909-915.

3. Zucker, S., Torres, G., and Mazeh, T. (1995). Study of Spectroscopic Binaries with TODCOR III. Application to Triple-Lined Systems. The Astrophysical Journal, 452, pp. 863-869.

4. Mazeh, T., Zucker, S., dalla Torre, A., and van Leeuwen, F. (1999). Analysis of the Hipparcos Measurements of υ Andromedae: A Mass Estimate of its Outermost Known Planetary Companion. The Astrophysical Journal Letters, 522, pp. L149-L151.

5. Zucker, S., and Mazeh, T. (2000). Analysis of the Hipparcos Measurements of HD10697: A Mass Determination of a Brown-Dwarf Secondary. The Astrophysical Journal Letters, 531, pp. L67-L69.

6. Mazeh, T., et al. (2000). The Spectroscopic Orbit of the Planetary Companion Transiting HD209458. The Astrophysical Journal Letters, 532, pp. L55-L58.

7. Leinert, Ch., Jahreiß, H., Woitas, J., Zucker, S., Mazeh, T., Eckart, A., and Köhler, R. (2001). Dynamical Mass Determination for The Very Low Mass Stars LHS 1070 B and C. Astronomy & Astrophysics, 367, pp. 183-188.

8. Naef, D., et al. (2001). HD80606b, a Planet on an Extremely Elongated Orbit. Astronomy & Astrophysics, 375, pp. L27-L30.

9. Mazeh, T., et al. (2001). Studies of Multiple Stellar Systems - IV. The Triple-Lined Spectroscopic System Gliese 644. Monthly Notices of the Royal Astronomical Society, 325, pp. 343-357.

10. Zucker, S., and Mazeh, T. (2001). Analysis of the Hipparcos Observations of the Extrasolar Planet and Brown-Dwarf Candidates. The Astrophysical Journal, 562, pp. 549-557.

11. Zucker, S., and Mazeh, T. (2001). Derivation of the Mass Distribution of Extrasolar Planets with MAXLIMA, a Maximum Likelihood Algorithm. The Astrophysical Journal, 562, pp. 1038-1044.

12. Mazeh, T., Prato, L., Simon, M., Goldberg, E., Norman, D., and Zucker, S. (2002). Infrared Detection of Low-Mass Secondaries in Spectroscopic Binaries. The Astrophysical Journal, 564, pp. 1007-1014.

13. Zucker, S., et al. (2002). A Planet Candidate in the Stellar Triple System HD 178911. The Astrophysical Journal, 568, pp. 363-368.

14. Zucker, S., and Mazeh, T. (2002). On the Mass-Period Correlation of the Extrasolar Planets. The Astrophysical Journal Letters, 568, pp. L113-L116.

15. Prato, L., Simon, M., Mazeh, T., McLean, I.S., Norman, D., and Zucker, S. (2002). The Smallest Mass Ratio Young Star Spectroscopic Binaries. The Astrophysical Journal, 569, pp. 863-871.

16. Kovács, G., Zucker, S., and Mazeh, T. (2002). A Box-Fitting Algorithm in Search for Periodic Transits. Astronomy & Astrophysics, 391, pp. 369-377.

17. Prato, L., Simon, M., Mazeh, T., Zucker, S., and McLean, I.S. (2002). Component Masses of the Young Spectroscopic Binary UZ Tau E. The Astrophysical Journal Letters, 579, pp. L99-L102.

18. Zucker, S., Mazeh, T., Santos, N.C., Udry, S., and Mayor, M. (2003). Multi-order TODCOR: Application to Observations Taken with the CORALIE Echelle Spectrograph I. The System HD41004. Astronomy & Astrophysics, 404, pp. 775-781.

19. Zucker, S. (2003). Cross-Correlation and Maximum Likelihood Analysis: A New Approach to Combining Cross-Correlation Functions. Monthly Notices of the Royal Astronomical Society, 342, pp. 1291-1298.

20. Mazeh, T., and Zucker, S. (2003). A Possible Correlation between Mass Ratio and Period Ratio in Multiple Planetary Systems. The Astrophysical Journal Letters, 590, pp. L115-L117.

21. Mazeh, T., Simon, M., Prato, L., Markus, B., and Zucker, S. (2003). The Mass-Ratio Distribution in Main-Sequence Spectroscopic Binaries Measured by Infrared Spectroscopy. The Astrophysical Journal, 599, pp. 1344-1356.

22. Podolak, M., and Zucker, S. (2004). A Note on the Snow Line in Protostellar Accretion Disks. Meteoritics and Planetary Science, 39, pp. 1859-1868.

23. Zucker, S., Mazeh, T., Santos, N.C., Udry, S., and Mayor, M. (2004). Multi-order TODCOR: Application to Observations Taken with the CORALIE Echelle Spectrograph II. A Planet in the System HD41004. Astronomy & Astrophysics, 426, pp. 695-698.

24. Southworth, J., Zucker, S., Maxted, P.F.L., and Smalley, B. (2004). Eclipsing Binaries in Open Clusters III. V621 Per in χ Persei. Monthly Notices of the Royal Astronomical Society, 355, pp. 986-994.

25. Bender, C., Simon, M., Prato, L., Mazeh, T., and Zucker, S. (2005). An Upper Bound on the 1.6 Micron Flux Ratio of ρ CrB's Companion. The Astronomical Journal, 129, pp. 402-408.

26. Mazeh, T., Zucker, S., and Pont, F. (2005). An Intriguing Correlation Between the Masses and Periods of the Transiting Planets. Monthly Notices of the Royal Astronomical Society, 356, pp. 955-957

27. Tamuz, O., Mazeh, T., and Zucker, S. (2005). Correcting Systematic Effects in a Large Set of Photometric Lightcurves. Monthly Notices of the Royal Astronomical Society, 356, pp. 1466-1470

28. Moutou, C., et al. (2005). Comparative Blind Test of Five Planetary Transit Detection Algorithms on Realistic Synthetic Light Curves. Astronomy & Astrophysics, 437, pp. 355-368.

29. Eisenhauer, F., et al. (2005). SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month. The Astrophysical Journal, 628, pp. 246-259.

30. Bouchy, F., et al. (2005). ELODIE Metallicity-Biased Search for Transiting Hot Jupiters II. A Very Hot Jupiter Transiting the Bright K Star HD189733. Astronomy & Astrophysics, 444, pp. L15-L19.

31. da Silva, R., et al. (2006). ELODIE Metallicity-Biased Search for Transiting Hot Jupiters I. Two Hot Jupiters Orbiting the Slightly Evolved Stars HD118203 and HD149143. Astronomy & Astrophysics, 446, pp. 717-722.

32. Zucker, S., Alexander, T., Gillessen, S., Eisenhauer, F., and Genzel, R. (2006). Probing Post-Newtonian Physics Near the Galactic Black Hole with Stellar Redshift Measurements. The Astrophysical Journal Letters, 639, pp. L21-L24.

33. Sozzetti, A., et al. (2006). A Massive Planet to the Young Disc Star HD81040. Astronomy & Astrophysics, 449, pp. 417-424.

34. Zucker, S., and Mazeh, T. (2006). TIRAVEL – Template Independent RAdial VELocity Measurement. Monthly Notices of the Royal Astronomical Society, 371, pp. 1513-1518.

35. Moutou, C., et al. (2006). ELODIE Metallicity-Biased Search for Transiting Hot Jupiters III. A Hot Jupiter Orbiting the Star HD185269. Astronomy & Astrophysics, 458, pp. 327-329.

36. Pont, F., Zucker, S., and Queloz, D. (2006). The Effect of Red Noise on Planetary Transit Detection. Monthly Notices of the Royal Astronomical Society, 373, pp. 231-242.

37. Zucker, S., and Alexander, T. (2007). Spectroscopic Binary Mass Determination Using Relativity. The Astrophysical Journal Letters, 654, pp. L83-L86.

38. Shporer, A., Tamuz, O., Zucker, S., and Mazeh, T. (2007). Photometric Follow-up of the Transiting Planet WASP-1b. Monthly Notices of the Royal Astronomical Society, 376, pp. 1296-1300.

39. da Silva, R., et al. (2007). ELODIE Metallicity-Biased Search for Transiting Hot Jupiters IV. Intermediate Period Planets Orbiting the Stars HD43691 and HD132406. Astronomy & Astrophysics, 473, pp. 323-328.

40. Zucker, S., Mazeh, T., and Alexander, T. (2007). Beaming Binaries - A New Observational Category of Photometric Binary Stars. The Astrophysical Journal, 670, pp. 1326-1330.

41. Liske, J., et al. (2008). Cosmic Dynamics in the Era of Extremely Large Telescopes. Monthly Notices of the Royal Astronomical Society, 386, pp. 1192-1218.

42. Santos, N.C., et al. (2008). ELODIE Metallicity-Biased Search for Transiting Hot Jupiters V. An Intermediate Period Jovian Planets Orbiting HD45652. Astronomy & Astrophysics, 487, pp. 369-372.

43. Aigrain, S., et al. (2008). Transiting Planets from the COROT Space Mission IV. CoRoT-Exo-4b: A Transiting Planet in a 9.2 Day Synchronous Orbit. Astronomy & Astrophysics, 488, pp. L43-L46.

44. Deleuil, M., et al. (2008). Transiting Exoplanets from the CoRoT Space Mission VI. CoRoT-Exo-3b: The First Secure Inhabitant of the Brown-Dwarf Desert. Astronomy & Astrophysics, 491, pp. 889-897.

45. Aigrain, S., et al. (2009). Noise Properties of the CoRoT Data: A Planet-Finding Perspective. Astronomy & Astrophysics, 506, pp. 425-429.

46. Mazeh, T., et al. (2009). Removing Systematics from the CoRoT Lightcurves: I. Magnitude-Dependent Zero Point. Astronomy & Astrophysics, 506, pp. 431-434.

47. Mazeh, T., Tsodikovich, Y., Segal, Y., Zucker, S., Eggenberger, A., Udry, S., and Mayor, M. (2009). TRIMOR – Three-Dimensional Correlation Technique to Analyze Multi-Order Spectra of Triple Stellar Systems; Application to HD188753. Monthly Notices of the Royal Astronomical Society, 399, pp. 906-913.

48. Almenara, J.M., et al. (2009). Rate and Nature of False Positives in the CoRoT Exoplanet Search. Astronomy & Astrophysics, 506, pp. 337–341.

49. Schlichting, H.E., Ofek, E.O., Wenz, M., Sari, R., Gal-Yam, A., Livio, M., Nelan, E., and Zucker, S. (2009). A Single Sub-Kilometre Kuiper Belt Object from a Stellar Occultation in Archival Data. Nature, 462, pp. 895-897.

50. Sahlmann, J., et al. (2011). Search for Brown-Dwarf Companions of Stars. Astronomy & Astrophysics, 525, A95.

51. Pont, F., Aigrain, S., and Zucker, S. (2011). Reassessing the Radial-Velocity Evidence for Planets Around CoRoT-7. Monthly Notices of the Royal Astronomical Society, 411, pp. 1953–1962.

52. Dzigan, Y., and Zucker, S. (2011). Directed Follow-up Strategy of Low-Cadence Photometric Surveys in Search of Transiting Exoplanets – I. Bayesian Approach for Adaptive Scheduling. Monthly Notices of the Royal Astronomical Society, 415, pp. 2513–2522.

53. Koriski, S., and Zucker, S. (2011). On the Ages of Planetary Systems with Mean Motion Resonances. The Astrophysical Journal Letters, 741, pp.  L23-L25.

54. Shporer, A., Brown, T., Mazeh, T., and Zucker, S. (2012). On Using the Beaming Effect to Measure Spin-Orbit Alignment in Stellar Binaries with Sun-Like Components. New Astronomy, 17, pp. 309-315.

55. Aigrain, S., Pont, and., and Zucker, S. (2012). A Simple Method to Estimate Radial Velocity Variations due to Stellar Activity Using Photometry. Monthly Notices of the Royal Astronomical Society, 419, pp. 3147-3158.

56. Mazeh, T., Nachmani, G., Sokol, G., Faigler, S., and Zucker, S. (2012). Kepler KOI-13.01 – Detection of Beaming and Ellipsoidal Modulations Pointing to a Massive Hot Jupiter. Astronomy & Astrophysics, 541, A56.

57. Dzigan, Y., and Zucker, S. (2012). Detection of Transiting Jovian Exoplanets by Gaia Photometry—Expected Yield. The Astrophysical Journal Letters, 753, pp.  L1-L5.

58. Dzigan, Y., and Zucker, S. (2013). Directed Follow-Up Strategy of Low-Cadence Photometric Surveys in Search of Transiting Exoplanets - II. Application to Gaia. Monthly Notices of the Royal Astronomical Society, 428, pp. 3641-3647.

59. Chelouche, D., and Zucker, S. (2013). Quasar Cartography: From Black Hole to Broad-line Region Scales. The Astrophysical Journal, 769, 124.

60. Mazeh, T., et al. (2013). Transit Timing Observations from Kepler. VIII Catalog of Transit Timing Measurements of the First Twelve Quarters. The Astrophysical Journal Supplement Series, 208, 16.

61. Zucker, S. (2015). Detection of Periodicity Based on Serial Dependence of Phase-Folded Data. Monthly Notices of the Royal Astronomical Society,  449, pp. 2723-2733.

62. Zucker, S., and Tzur, I. (2015). Constraining the Orbits of Small Solar System Bodies Using Spectroscopic Doppler Shift Measurements - A Preliminary Study. Astronomische Nachrichten, 336, pp. 634-637.

63. Helled, R., Lozovsky, M., and Zucker, S. (2016). A Possible Correlation between Planetary Radius and Orbital Period for Small Planets. Monthly Notices of the Royal Astronomical Society, 455, pp. L96–L98.

64. Zucker, S. (2016). Detection of Periodicity Based on Independence Tests - II. Improved Serial Independence Measure. Monthly Notices of the Royal Astronomical Society Letters, 457, pp. L118–L121.

65. Bon, E., et al. (2016). Evidence for Periodicity in 43 year-long Monitoring of NGC 5548. The Astrophysical Journal Supplement Series, 225, 29.

66. Ma, B., et al. (2016). Very Low-mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. VI. A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646. The Astronomical Journal, 152, 112.

67. The Gaia Collaboration (Prusti, T., et al.) (2016). The Gaia Mission. Astronomy & Astrophysics, 595, A1.

68. The Gaia Collaboration (Brown, A.G.A., et al.) (2016). Gaia Data Release 1. Summary of the Astrometric, photometric and survey properties. Astronomy & Astrophysics, 595, A2.

69. Bashi, D., Helled, R., Zucker, S., and Mordasini, C. (2017). Two Empirical Regimes of the Planetary Mass-Radius Relation. Astronomy & Astrophysics, 604, A83.

70. The Gaia Collaboration (van Leeuwen, F., et al.) (2017). Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects. Astronomy & Astrophysics, 601, A19.

71. The Gaia Collaboration (Clementini, G., et al.) (2017). Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars. Astronomy & Astrophysics, 605, A79.

72. Chelouche, D., and Zucker, S. (2017). Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness. The Astrophysical Journal, 844, 146.

73. Cabrera, J., et al. (2017). Disproval of the validated planets K2-78b, K2-82b, and K2-92b. Astronomy & Astrophysics, 606, A75.

74. Zucker, S. (2018). Detection of Periodicity Based on Independence Tests - III. Phase Distance Correlation Periodogram. Monthly Notices of the Royal Astronomical Society Letters, 474, pp. L86-L90.

75. Zucker, S., and Giryes, R. (2018). Shallow Transits - Deep Learning I: Feasibility Study of Deep Learning to Detect Periodic Transits of Exoplanets. The Astronomical Journal, 155, 4.

76. The Gaia Collaboration (Brown, A.G.A., et al.) (2018). Gaia Data Release 2. Summary of the Contents and Survey Properties. Astronomy & Astrophysics, 616, A1.

77. The Gaia Collaboration (Mignard, F., et al.) (2018). Gaia Data Release 2. The Celestial Reference Frame (Gaia-CRF2). Astronomy & Astrophysics, 616, A14.

78. The Gaia Collaboration (Spoto, F., et al.) (2018). Gaia Data Release 2. Observations of Solar System Objects. Astronomy & Astrophysics, 616, A13.

79. The Gaia Collaboration (Katz, D., et al.) (2018). Gaia Data Release 2. Mapping the Milky Way Disc Kinematics. Astronomy & Astrophysics, 616, A11.

80. The Gaia Collaboration (Babusiaux, C., et al.) (2018). Gaia Data Release 2. Observational Hertzsprung-Russell Diagrams. Astronomy & Astrophysics, 616, A10.

81. The Gaia Collaboration (Helmi, A., et al.) (2018). Gaia Data Release 2. Kinematics of Globular Clusters and Dwarf Galaxies Around the Milky Way. Astronomy & Astrophysics, 616, A12.

82. Bashi, D., Helled, R., and Zucker, S. (2018). A Quantitative Comparison of Exoplanet Catalogs. Geosciences, 8, 325.

83. Holl, B., et al. (2018). Gaia Data Release 2. Summary of the variability processing and analysis results. Astronomy & Astrophysics, 618, A30.

84. Tal-Or, L., Trifonov, T., Zucker, S., Mazeh, T., and Zechmeister, M. (2019). Correcting HIRES/Keck radial velocities for small systematic errors. Monthly Notices of the Royal Astronomical Society484, pp. L8-L13.

85. Zucker, S. (2019). Detection of Periodicity Based on Independence Tests - IV. Phase Distance Correlation Periodogram for Two-Dimensional Astrometry. Monthly Notices of the Royal Astronomical Society Letters, 484, pp. L14-L18.

86. Tal-Or, L., Zucker, S., Ribas, I., Anglada-Escudé, and Reiners, A. (2019). Prospects for detecting the astrometric signature of Barnard's Star b. Astronomy & Astrophysics, 623, A10.

87. The Gaia Collaboration (Eyer, L., et al.) (2019). Gaia Data Release 2. Variable stars in the colour-absolute magnitude diagram. Astronomy & Astrophysics, 623, A110.

88. Bashi, D., and Zucker, S. (2019). Small planets in the Galactic context: host star kinematics, iron and alpha elements. The Astronomical Journal, 158, 2.

89. Trifonov, T., Tal-Or, L., Zechmeister, M., Kaminski, A., Zucker, S., and Mazeh, T. (2020). A public HARPS radial velocity database corrected for systematic errors. Astronomy & Astrophysics, 636, A74.

90. Binnenfeld, A., Shahaf, S., and Zucker, S. (2020). USuRPER: Unit-Sphere Representation PERiodogram for full spectra. Astronomy & Astrophysics, 642, A146.

91. Bashi, D., Zucker, S., Adibekyan, V., Santos, N. C., Tal-Or, L., Trifonov, T., and Mazeh, T. (2020). Occurrence rates of small planets form HARPS: Focus on the Galactic context. Astronomy & Astrophysics, 643, A106.

92. Panahi, A., and Zucker, S. (2021). Sparse box-fitting least squares. Publications of the Astronomical Society of the Pacific, 133, 024502.

93. The Gaia Collaboration (Brown, A.G.A., et al.) (2021). Gaia Early Data Release 3. Summary of the contents and survey properties. Astronomy & Astrophysics, 649, A1.

94. The Gaia Collaboration (Smart, R.L., et al.) (2021). Gaia Early Data Release 3. The Gaia catalogue of nearby stars. Astronomy & Astrophysics, 649, A6.

95. The Gaia Collaboration (Luri, X., et al.) (2021). Gaia Early Data Release 3. Structure and properties of the Magellanic Clouds. Astronomy & Astrophysics, 649, A7.

96. The Gaia Collaboration (Antoja, T., et al.) (2021). Gaia Early Data Release 3. The Galactic anticentre. Astronomy & Astrophysics, 649, A8.

97. The Gaia Collaboration (Klioner, S. A., et al.) (2021). Gaia Early Data Release 3. Acceleration of the Solar System from Gaia astrometry. Astronomy & Astrophysics, 649, A9.

98. Hobson, M. J., et al. (2021). A transiting warm giant planet around the young active star TOI-201. The Astronomical Journal, 161, 235.

99. Shahaf, S., Mazeh, T., Zucker, S., and Fabrycky, D. (2021). Systematic search for long-term transit duration changes in Kepler transiting planets. Monthly Notices of the Royal Astronomical Society, 505, pp. 1293-1310

100. Bashi, D., and Zucker, S. (2021). Quantifying the similarity of planetary system architectures. Astronomy & Astrophysics, 651, A61.

101. Bashi, D., and Zucker, S. (2022). Exoplanets in the Galactic context: Planet occurrence rates in the thin disk, thick disk and stellar halo of Kepler stars. Monthly Notices of the Royal Astronomical Society, 510, pp. 3449-3459.

102. Heifetz, E., and Zucker, S. (2022). Fluid-like representation of Fickian diffusion. Physics of Fluids, 34, 011701.

103. Binnenfeld, A., Shahaf, S., Anderson, R. I., and Zucker, S. (2022). New periodograms separating orbital radial velocities and spectral shape variation. Astronomy & Astrophysics, 659, A189.

104. Sreenivas, K. R., Perdelwitz, V., Tal-Or, L., Trifonov, T., Zucker, S., and Mazeh, T. (2022). Analysis of the public HARPS/ESO spectroscopic archive: Jupiter-like planets around HD103891 and HD 105779. Astronomy & Astrophysics, 660, A124.

105. Dvash, E., Peleg, Y., Zucker, S., and Giryes, R. (2022). Shallow Transits - Deep Learning II: Identify individual exoplanetary transits in red noise using deep learning. The Astronomical Journal, 163, 237.

106. Panahi, A., et al. (2022). The Detection of Transiting Exoplanets by Gaia. Astronomy & Astrophysics, 663, A101.

107. The Gaia Collaboration (Klioner, S. A., et al.) (2022). Gaia early Data Release 3. The celestial reference frame (Gaia-CRF3). Astronomy & Astrophysics, 667, A148.

108. Panahi, A., Mazeh, T., Zucker, S., Latham, D. W., Collins, K. A., Rimoldini, L., Evans, D. W., and Eyer, L. (2022). Gaia-TESS synergy. Improving the identification of transit candidates. Astronomy & Astrophysics, 667, A14.

109. Gan, T., et al. (2023). Occurrence rate of hot Jupiters around early-type M dwarfs based on TESS data. The Astronomical Journal, 165, 17.

110. The Gaia Collaboration (Vallenari, A., et al.) (2023). Gaia Data Release 3. Summary of the content and survey properties. Astronomy & Astrophysics, 674, A1.

111. The Gaia Collaboration (Recio-Blanco, A., et al.) (2023). Gaia Data Release 3. Chemical cartography of the Milky Way. Astronomy & Astrophysics, 674, A38.

112. The Gaia Collaboration (Arenou, F., et al.) (2023). Gaia Data Release 3. Stellar multiplicity, a teaser for the hidden treasure. Astronomy & Astrophysics, 674, A34.

113. The Gaia Collaboration (Bailer-Jones, C., et al.) (2023). Gaia Data Release 3. The extragalactic content. Astronomy & Astrophysics, 674, A41.

114. The Gaia Collaboration (Creevey, O. L., et al.) (2023). Gaia Data Release 3. A golden sample of astrophysical parameters. Astronomy & Astrophysics, 674, A39.

115. The Gaia Collaboration (De Ridder, J., et al.) (2023). Gaia Data Release 3. Pulsations in main-sequence OBAF-type stars. Astronomy & Astrophysics, 674, A36.

116. The Gaia Collaboration (Drimmel, R., et al.) (2023). Gaia Data Release 3. Mapping the assymetric disc of the Milky Way. Astronomy & Astrophysics, 674, A37.

117. The Gaia Collaboration (Galluccio, L., et al.) (2023). Gaia Data Release 3. Reflectance spectra of Solar System small bodies. Astronomy & Astrophysics, 674, A35.

118. The Gaia Collaboration (Montegriffo, P., et al.) (2023). Gaia Data Release 3. The Galaxy in your preferred colours. Synthetic photometry from Gaia low-resolution spectra. Astronomy & Astrophysics, 674, A33.

119. The Gaia Collaboration (Eyer, L., et al.) ) (2023). Gaia Data Release 3. Summary of the variability processing and analysis. Astronomy & Astrohysics, 674, A13.

120. Rimoldini, L., et al. (2023). Gaia Data Release 3. All-sky classificiation of 12.4 million variable sources into 25 classes. Astronomy & Astrophysics, 674, A14.

121. Gavras, P., et al. (2023). Gaia Data Release 3. Cross-match of Gaia sources with variable objects from the literature. Astronomy & Astrophysics, 674, A22.

122. The Gaia Collaboration (Schiltheis, M., et al.) (2023). Gaia Data Release 3. Exploring and mapping the diffuse interstellar band at 862 nm. Astronomy & Astrophysics, 674, A40.

123. Binnenfeld, A., Shahaf, S., and Zucker, S. (2023). Model-independent periodogram for scanning astrometry. Astronomy & Astrophysics, 675, A124.

124. The Gaia Collaboration (Weingrill, K., et al.) (2023). Gaia Focused Product Release: Sources from Service Interface Function image analysis. Half a million new sources in omega Centauri. Astronomy & Astrophysics, 680, A35.

125. The Gaia Collaboration (Trabucchi, M., et al.) (2023). Gaia Focused Product Release: Radial velocity time series of long-period variables. Astronomy & Astrophysics, 680, A36.

126. The Gaia Collaboration (David, P., et al.) (2023). Gaia Focused Product Release: Asteroid orbital solution. Properties and assessment. Astronomy & Astrophysics, 680, A37.

127. The Gaia Collaboration (Schultheis, M., et al.) (2023). Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands. Astronomy & Astrophysics, 680, A38.

128. The Gaia Collaboration (Krone-Martins, A., et al.) (2024). Gaia Focused Product Release: A catalogue of sources around quasars to search for strongly lensed quasars. Astronomy & Astrophysics, 685, A130.

129. Hord, B. J. et al. (2024). Identification of the Top TESS Objects of Interest for Atmospheric Characterization of Transiting Exoplanets with JWST. The Astronomical Journal, 167, 5.

130. Binnenfeld, A., Shahaf, S., and Zucker, S. (2024). Adaptation of the Phase Distance Correlation Periodogram to Account for Measurement Uncertainties. Astronomy & Astrophysics, 686, A192.

131. Tha Gaia Collaboration (Panuzzo, P., et al.) (2024). Discovery of a dormant 33 solar-mass black hole in pre-release Gaia astrometry. Astronomy & Astrophysics, 686, L2.

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>